Cenere Vulcanica e Sicurezza nella gestione del Traffico Aereo

T.Col. Franco Colombo

Comando Aeroporto Sigonella, Italy

Prima giornata SV 2019, 7 Marzo 2019, Sigonella UNCLASSIFIED

INTRODUZIONE

Dal 1973 al 2000, circa 100 incontri di aerei in volo con cenere vulcanica sono stati documentati (Figura 1).

Tale numero può essere considerato un valore minimo, perché non tutti gli incidenti sono stati segnalati pubblicamente.

Figure 1. Plot of number of reported aircraft encounters with volcanic ash clouds from 1973-2000.

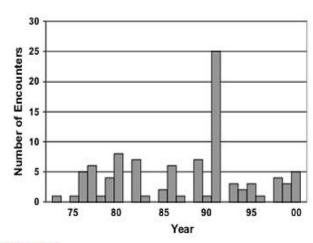
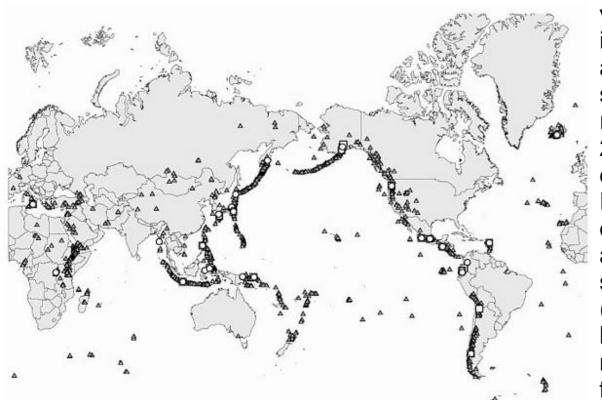



Figure 2. Locations of volcanoes responsible for ash/aircraft encounters, 1973-2000 (circles) and air

La figura 2 mostra la posizione dei 32 vulcani le cui eruzioni hanno determinato impatti diretti sugli aeromobili o sugli aeroporti. I danni agli Aeromobili sono stati provocati sia da piccole eruzioni ricorrenti (ad esempio, l'Etna, Italia, 2000) sia da eruzioni di grandi dimensioni, meno frequenti (ad esempio, Pinatubo, Filippine, 1991). La gravità dei danni è variata da quasi irrilevante (odore acre in cabina e scariche elettrostatiche sul parabrezza) a gravissimo (spegnimenti multipli dei motore che hanno richiesto il riavvio in volo di motori). Questi ultimi si sono verificati fino a 600 miglia da sorgenti vulcaniche.

Argomenti Trattati

→QUADRO GEOGRAFICO DI RIFERIMENTO

→CENERE E POLVERE VULCANICA (ASH vs DUST)

- Quali sono le corrette definizioni di "cenere" (volcanic ash) e "polvere" (volcanic dust)
- Quali sono le principali caratteristiche della cenere e della polvere vulcanica

→ PERICOLI E RISCHI PER LA SICUREZZA DEL VOLO PRODOTTI DA CENERE E POLVERE VULCANICA

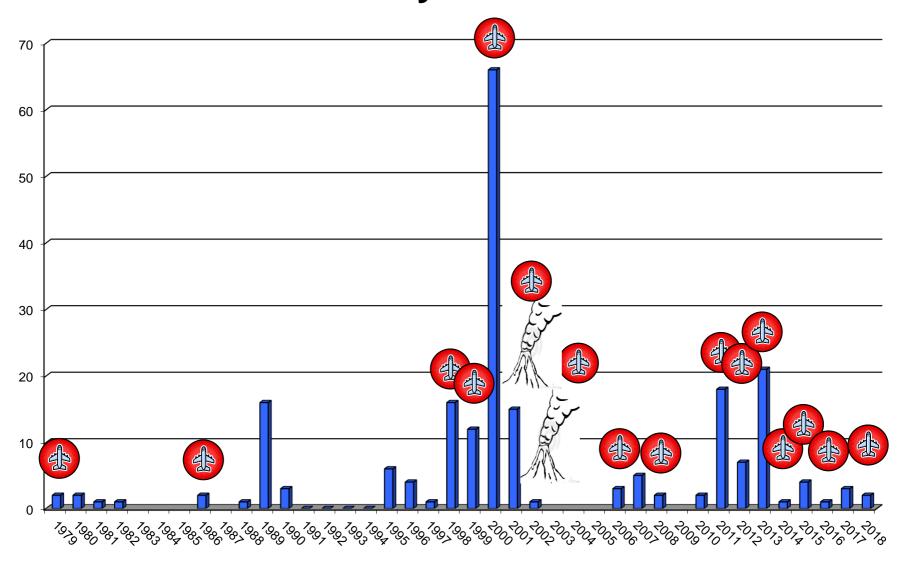
- Quali sono i pericoli identificati?
- . Quali sono gli effetti negativi sulla Sicurezza del Volo?
- Quali sono i livelli di rischio associati?
- Valutazione dei pericoli e dei rischi per gli operatori
- Valutazione dei pericoli e dei rischi per l'industria aeronautica

→ STRATEGIE DI MITIGAZIONE DEL RISCHIO

- Quali sono le azioni raccomandate in caso di "incontro" con nubi di vulcaniche
- Misure dirette e previsione di concentrazione
- . Mitigazione basata sulla previsione di concentrazione
- . Ultime tendenze nello sviluppo di sensori remoti e analisi dei dati

Il caso "Etna"

Frequente formazione di plume eruttivi di medie dimensioni (oltre 200 negli ultimo 40 anni)

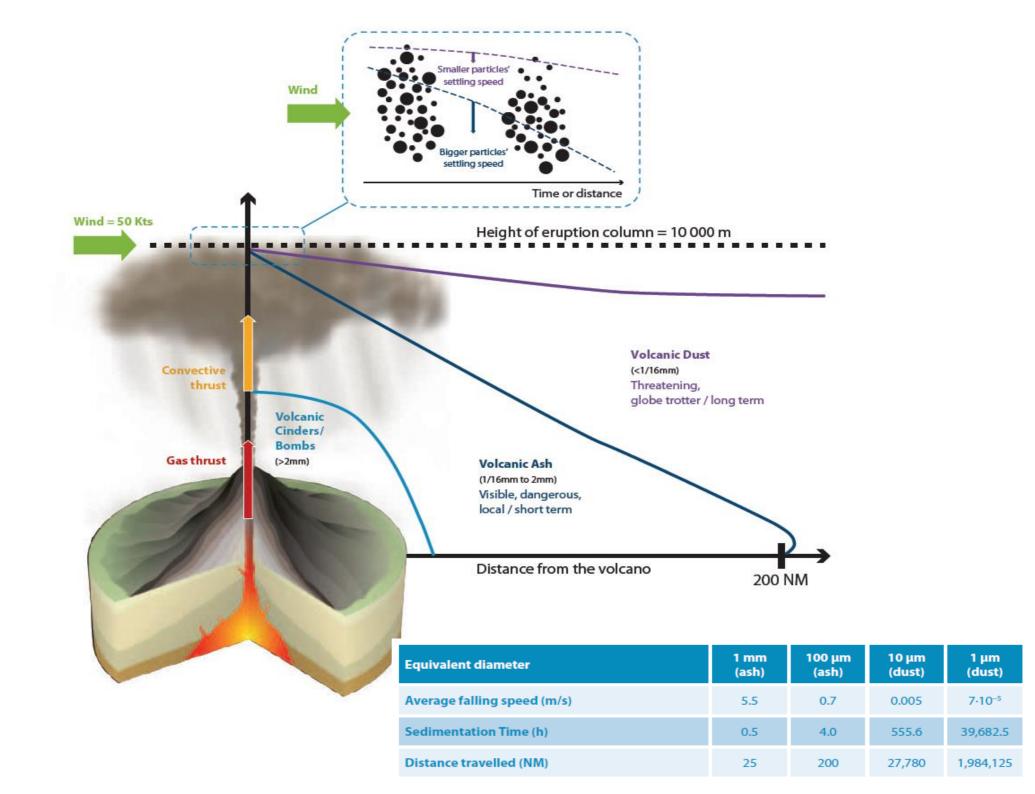

Quattro aeroporti nelle vicinanze del vulcano di cui 2 (Fontanarossa e Sigonella) entro le 25 miglia

I collegamenti tra la Sicilia (seconda regione italiana per popolazione) ed il continente avvengono sopratutto per via aerea

Il vulcano occupa una posizione che lo pone lungo le rotte che vanno dal nord Europa verso l'Africa, il medio ed estremo oriente e l'Australia

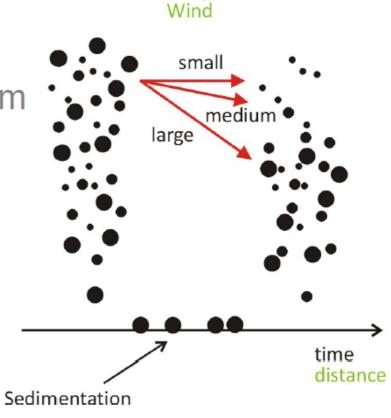
Da necessità ad opportunità: sviluppo di procedure per la gestione del traffico aereo in situazione di Contingency

More the 200 ash plume forming eruptions in the last 40 years


disruptions/problems from Guffanti et al, 2007, 2008, 2010 databases, updated

The last crisis 2011 – 2015: 53 lava fountain eruptions

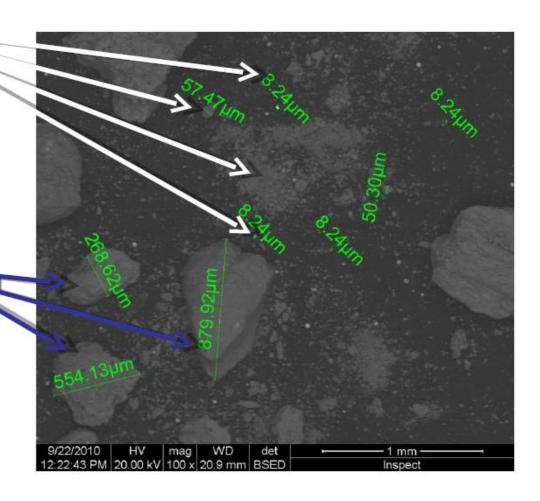
- 2011: 18 plume forming events
- 2012: 7 plume forming events
- 2013: 21 plume forming events
- 2014: 2 plume forming events
- 2015: 5 plume forming events


CENERE E POLVERE VULCANICA (ASH vs DUST)

Terminology discriminator:

Volcanic Ash = 1/16 mm - 2 mm (Coarse ash)

Volcanic **Dust** < 1/16 mm (Fine ash)


	Volcanic Ash	Volcanic Dust
Particle size (μm)	63 - 2000	< 63
Location	1-200 NM around the volcano	Floats around the world
Sedimentation time ≈	1/2 hour (for 1 mm)	23 Days (for 10μm)

Ash vs. Dust

Volcanic Dust ϕ < 1/16 m² (Fine ash)

Volcanic Ash $\phi = 1/16 - 2$ mere (Coarse ash)

	Volcanic ash	Volcanic dust	
Particle size range	1/16 mm – 2 mm i.e. 62.5 μm – 2000 μm	< 1/16 mm i.e. Less than 62.5 μm	
Composition	Volcanic ash and volcanic dust are het composed of quartz (cry		
Shape	Volcanic ash/dust particles are not uniformly spherical (presence of sharp edges)		
Melting temperature	Located between 900°C and 1100°C		
Life span (sedimentation time)	Short (e.g. Half an hour for 1 mm ash)	Long (e.g. 23 days for 10 μm dust)	
Contamination extent	Local (within 1-200 NM of eruption site, greatest value recorded in history being 500 NM)	Globe-trotter	

Table 2 – Main characteristics of volcanic ash and volcanic dust

Figure 4 – Volcanic ash cloud rising from Eyjafjallajökull's crater (April 14, 2010)

Figure 6 – (1) Volcanic Ash Cloud (VAC); (2) Volcanic Dust Contamination (VDC)

Figure 5 – Volcanic dust contamination over Kodiak Island, Alaska (September 21, 2003)

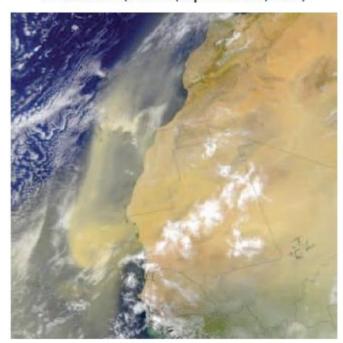
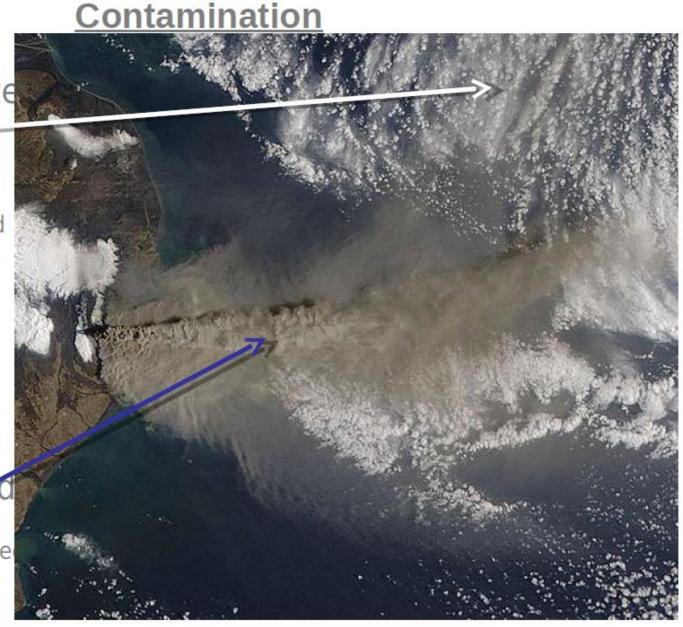


Figure 7 – Sand aerosols of Saharan origin over the coast of Africa

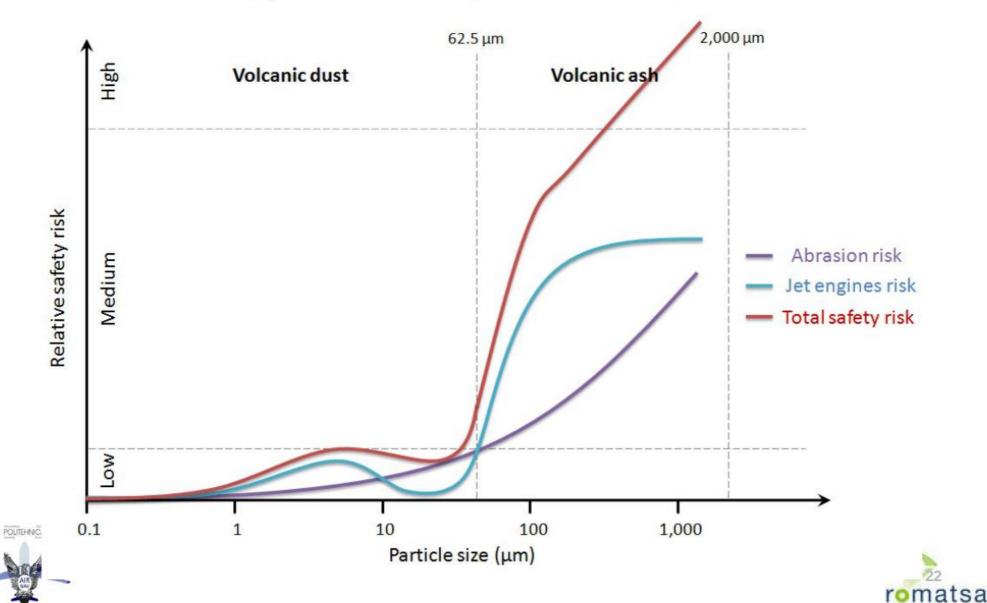

Visible Volcanic Ash Cloud vs. Volcanic Dust

Volcanic Dust Haze (Contamination)

Thin layers of dust only visible from selected viewing angles or from a far distance e.g. satellite

Cloud clearly visible to nake eye from all angles, clear boundary

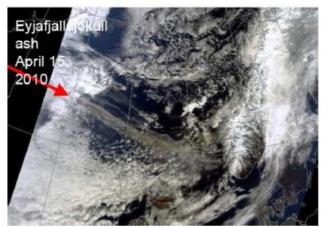
VDC VAC


Volcanic Ash / Dust / Sand Aerosols

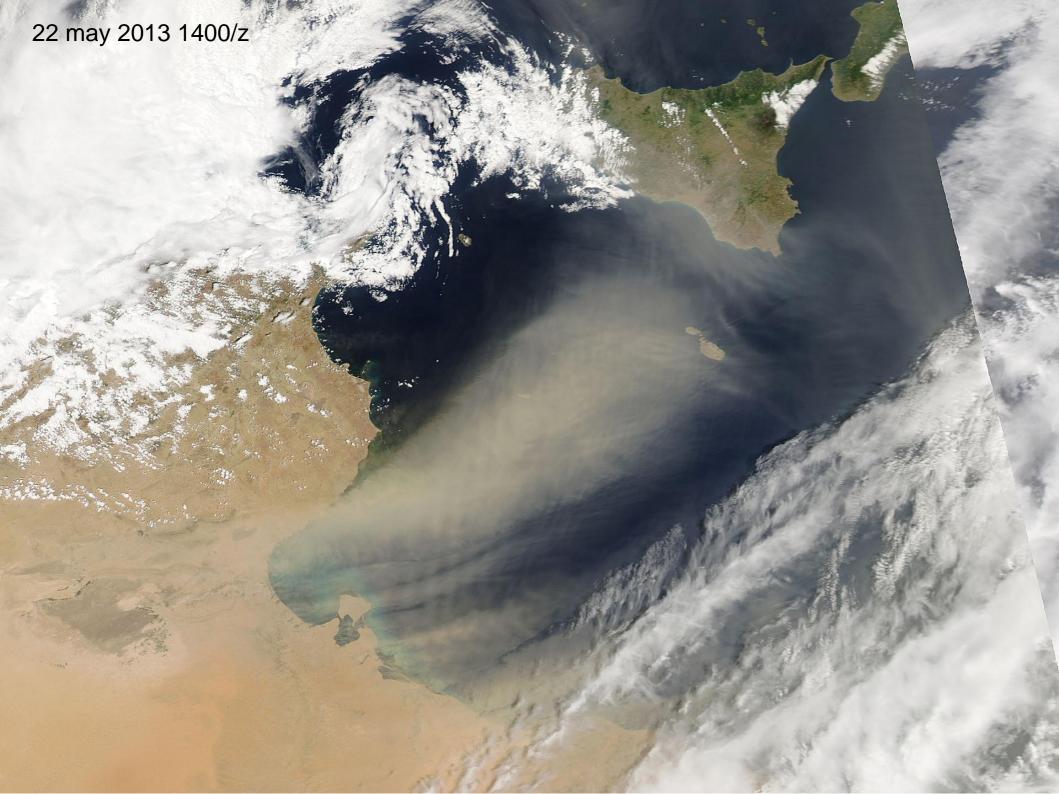
FUROCONTROL	FURDICONTROL					
	Volcanic Ash Cloud	Volcanic Dust Contamination	Sand Aerosol Contamination			
Visibility	Clearly visible from all angles, easily identifiable by dark colour, distinct boundary	Visible only from selected angles, hard to distinguish, visible in satellite imagery	Visible sometimes from selected angles, visible in satellite imagery			
Where?	Within 1-200 NM of the eruption up to 500 NM	Very large areas (>1000 NM in size)	Large areas			
Typical Concentrations $(1 \text{ kg/hm}^3 = 10^{-3} \text{ g/m}^3)$	1000 kg/hm ³	1-100 kg/hm³	1-100 kg/hm ³			
Particle size range (μm)	1-2000	1-40	1-50			
Floatability in atmosphere (age)	12 Hours (due to ash- dust differentiated sedimentation)	6 Days (traces remain for years)	3 Days			

Relative Safety Risk vs. Size: 0.1-1000 µm

(qualitative representation)



PERICOLI, EFFETTI E RISCHI PER LA SICUREZZA DEL VOLO PRODOTTI DA CENERE E POLVERE VULCANICA



	Volcanic Ash Cloud	Volcanic Dust Contamination	Sand Aerosol Contamination
Aviation Safety Risk	Serious incidents, no injury accidents	None on record	None
Impact on aviation	Local	Global due to misinterpretation	Maintenance issues

Effetti delle ceneri vulcaniche sugli aeromobili

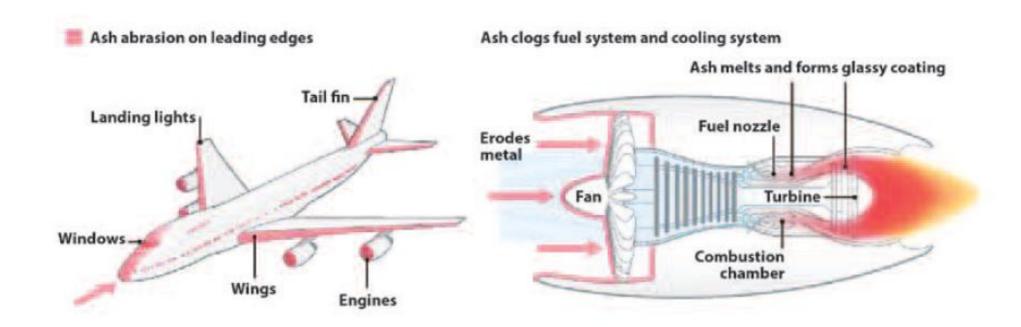


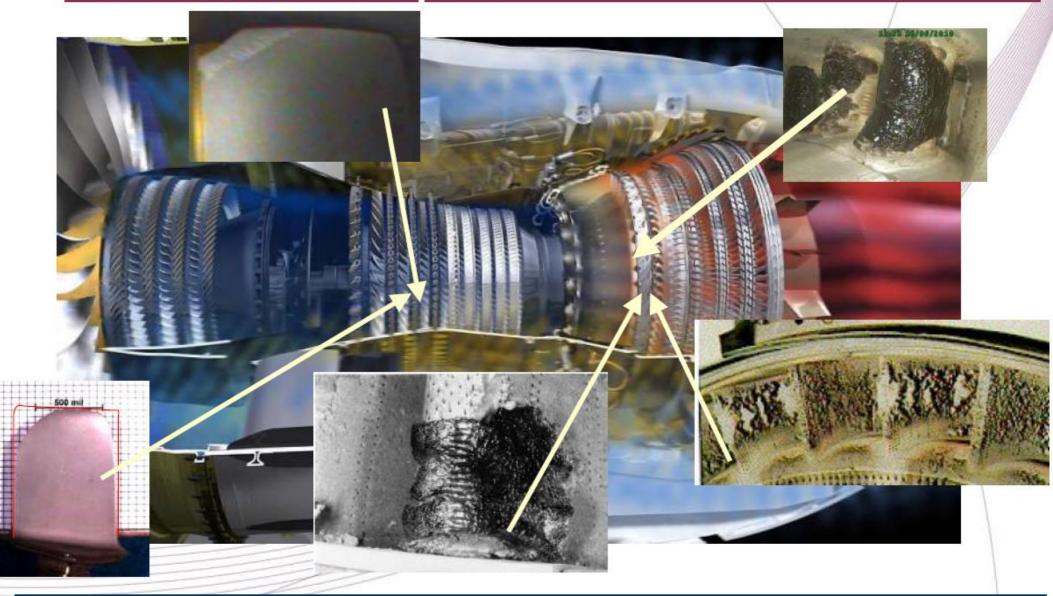
Figure 25 – Illustration of the aviation safety threats posed by the exposure to volcanic ash/dust particles

Effetti della contaminazione vulcanica sui motori

Esposizione ad alte concentrazioni / effetti immediati (impatto operativo)

Depositi vetrificati sulle parti calde non rotanti (High pressure turbine nozzle guide vanes)

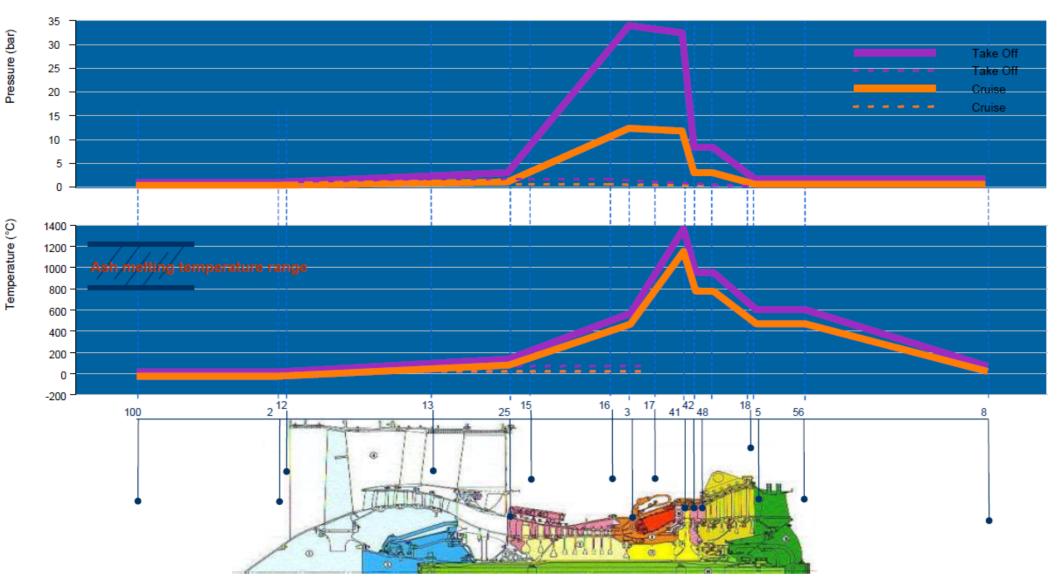
- Riduce la sezione di uscita dei gas combusti
- Ne può derivare un'instabilità aerodinamica del compressore (stallo del compressore) fino ad arrivare al "flame-out del motore con impossibilità di riaccensione immediata dello stesso.


•Altre esperienze hanno evidenziato:

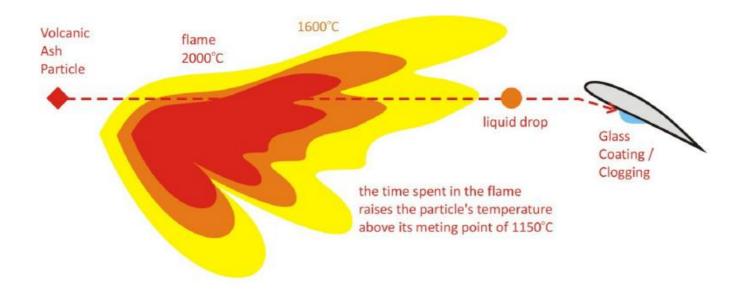
- Flame-out quasi-simultaneo di più motori (3 casi su aerei quadrimotore con 3 differenti tipi di motore)
- Riavvio dei motori anche dopo 7 tentativi (un ciclo termico può rompere i depositi vetrificati e ripristinare la sezione)

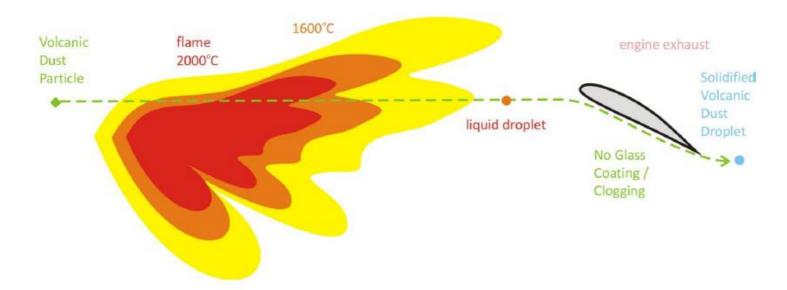
Esposizione a basse concentrazioni / effetti a medio o lungo termine

- Erosione delle palette del compressore
- Intasamento dei fori calibrati di raffreddamento
- Corrosione di parti metalliche
- Contaminazione del circuito dell'olio
- Contaminazione dei sensori dei circuiti pneumatici


ASH and Silica Impact

Exposure to high ash concentration is a safety concern – No accident so far Exposure to low concentration raises durability problems (accelerated aging)


Pressures and temperatures: Typical distribution



This document and the information contained are Snecma property and shall not be copied or disclosed to any third party without Snecma prior written authorization.

Glass Coating / Clogging by Ash vs. Dust

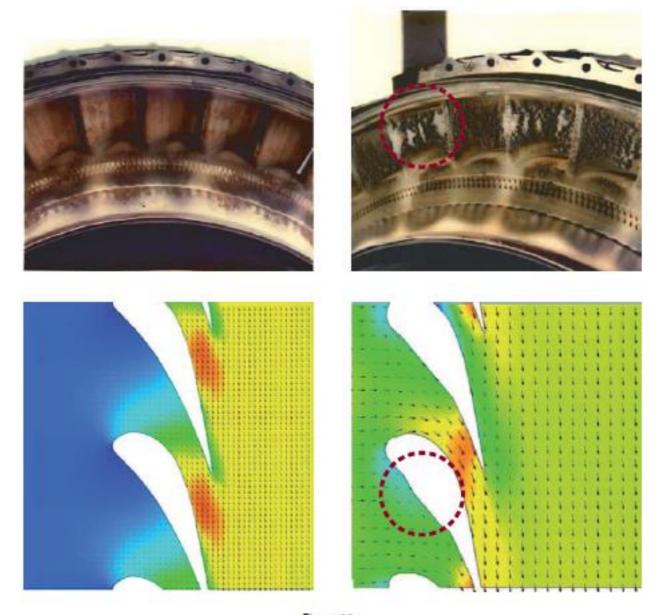
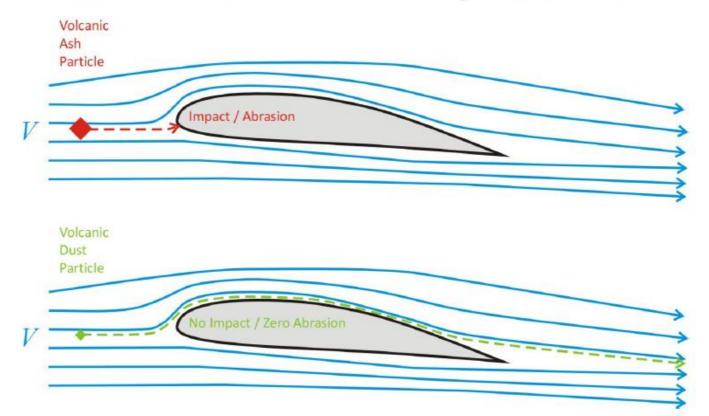


Figure 10 –

3-D and 'unfolded' 2-D views of turbine nozzle guide vanes without deposition (Left) same views but with volcanic dust deposits: the flow cross section is restricted (Right)



Abrasion Caused by Ash vs. Dust

Ash follows airflow streamlines imperfectly and impacts walls: inertial forces > aerodynamic forces

Dust follows airflow streamlines:

inertial forces << aerodynamic forces

Intasamenti meccanici di sensori esterni (Pitot etc..)

Figure 13 – Pitot-static probes on Air France's Airbus A380

IL RISCHIO VULCANICO

La funzione Rischio è data dal prodotto della probabilità che un dato evento si verifichi per la gravità del danno prodotto dal medesimo evento.

Nell'ambito della contaminazione da cenere vulcanica, <u>il rischio dipende</u> dal *livello di concentrazione*, dalla *durata dell'esposizione* e dalla *dimensione delle particelle*.

Il livello di concentrazione è un parametro di fondamentale importanza. Esso è espresso in milligrammi/metro cubo anche se sarebbe meglio esprimerlo in Kg/ettometro cubo. Tale unità di misura rappresenta infatti la quantità di aria ingerita da un motore aeronautico di medie dimensioni in un tempo di 10 minuti. Quest'ultimo è l'intervallo di tempo medio necessario ad un pilota per attuare delle procedure di scampo in caso di incontro con nubi di cenere vulcanica.

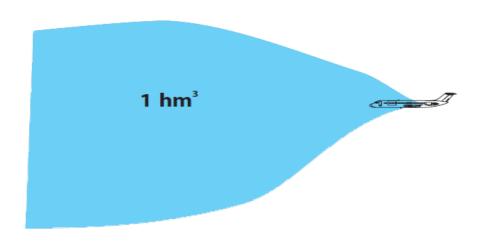


Figure 14 – A cubic hectometre is the order of magnitude of the air volume ingested by a modern jet engine within a time span of 10 minutes.

Dopo l'eruzione islandese del 2010 gli esperti della Rolls-Royce hanno prodotto la seguente "Safe to fly chart"

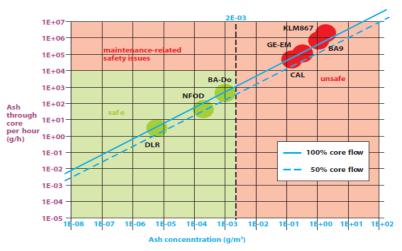


Figure 15 – Rolls-Royce 'Safe To Fly' chart

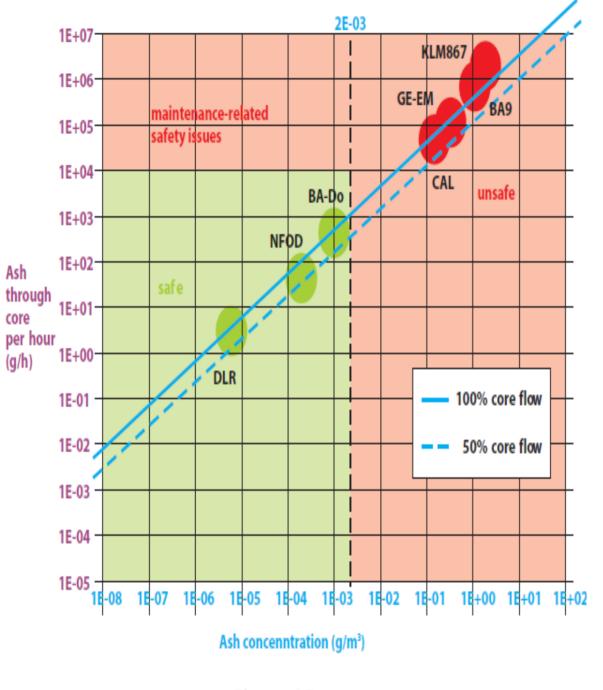


Figure 15 – Rolls-Royce 'Safe To Fly' chart

Secondo i loro calcoli il livello di concentrazione massima sopportabile da un motore per essere nella "safe area" è di 2mg/m3. Tuttavia a seguito delle ispezioni sui motori fatte dopo l'eruzione islandese, tale soglia è stata portata a 4mg/m3, adottata successivamente dall'ICAO e ripresa da quasi tutti gli stati, Italia compresa:

Terminology

Area of Low Contamination: An airspace of defined dimensions where volcanic ash may be encountered at concentrations equal to or less than 2x10-3 g/m3.

Area of Medium Contamination: An airspace of defined dimensions where volcanic ash may be encountered at concentrations greater than 2x10-3 g/m3, but less than 4x10-3 g/m3.

Area of High Contamination: An airspace of defined dimensions where volcanic ash may be encountered at concentrations equal to or greater than 4x10-3 g/m3, or areas of contaminated airspace where no ash concentration guidance is available.

	Volcanic Ash Cloud	Volcanic Dust Contamination	Sand Aerosol Contamination
Visibility	Clearly visible (from all angles) and easily identifiable due to dark colour and definite boundaries	Visible only from selected angles or satellite imagery: hard to distinguish	Visible only from selected angles or satellite imagery
What does it contain?	Volcanic ash particles Volcanic dust particles Volcanic fumes	Volcanic dust Volcanic fumes	Sand particles
Where?	Within 1-200 NM of the eruption	Very large areas (>1000 NM in size)	Large areas
Typical atmospheric concentrations	1000 kg/hm³	1-100 kg/hm³	1-100 kg/hm³
Particle size range (μm)	1-2000	1-40	1-50
Floatability in atmosphere (age)	1-2 Days (due to ash-dust differentiated sedimentation)	6 Days (traces remain for years)	3 Days

Table 3 –

Main characteristics of volcanic ash clouds (VACs), volcanic dust contamination (VDC)

and sand aerosol contamination

2 mg/m3 = 2 kg/hm3

Problem	Absolute Severity	ICAO Severity Index	Related Hazard(s)	Probability of occurrence within 10mins	Risk level
Engine flame-out	High	4	VAC	High	High
Engine name-out	riigii	7	VDC	Low to Medium	Medium
Engine overheating	Medium	3-4	VAC	High	High
Engine overneating	to High	374	VDC	Low to Medium	Medium
Plugging of Pitot-	Low	2-3	VAC	Medium	Medium
static probes	to High	2-3	VDC	Low to Medium	Low to Medium
Abrasion of engine	NA - disse-	2	VAC	Medium	Medium
components	Medium	Medium 3 VDC	VDC	Low to Medium	Low to Medium
Failure of pneumatic	Medium	3	VAC	Low to Medium	Medium
controls	Medium	m 3 VDC	Low	Low	
Wear of external	Medium	2	VAC	Medium	Medium
aircraft components	Medium	2 VDC		Low	Low
Malfunction of	Medium	2	VAC	Medium	Medium
on-board instruments	Medium	2	VDC	Low	Low
Contamination of	Medium	2	VAC	Low to Medium	Medium
air handling and air conditioning systems	to High			Low	Low
Corrosion of aircraft	Low	7	VAC	Low to Medium	Low to Medium
metallic components	to Medium	2	VDC	Medium	Low

Table 5 – Sample of Risk assessment of the effects induced by VAC and VDC hazards from operator perspective

IL RISCHIO VULCANICO

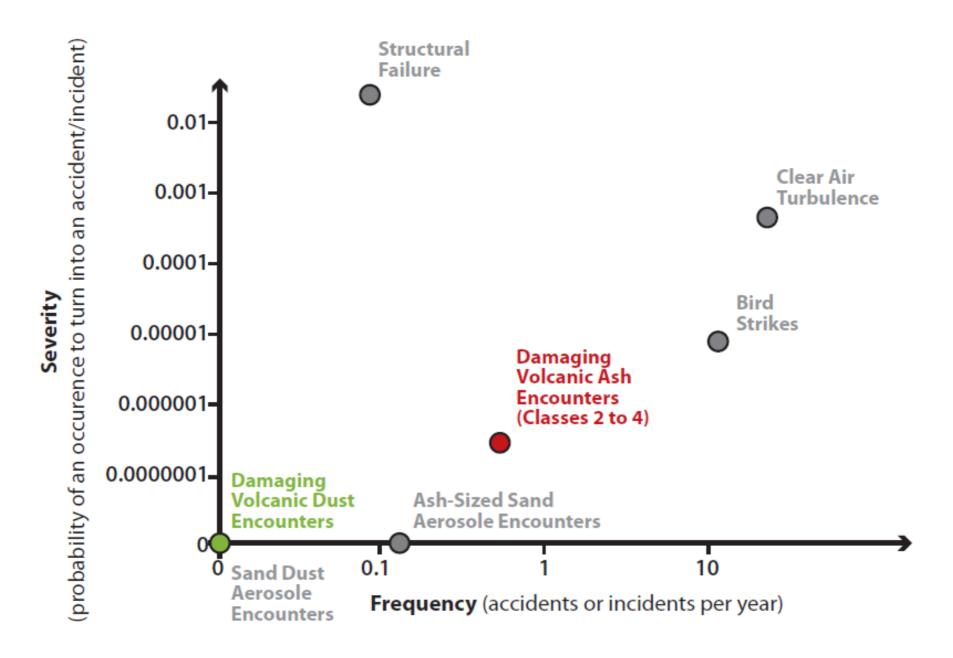


Figure 17 – Aviation safety threats plotted according to severity and frequency

MITIGATION STRATEGIES ASSESSMENT

What are the recommended actions in case of hazard encounter during flight?

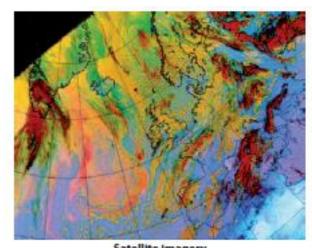
VOLCANIC ASH CLOUD, VAC

- Immediately reduce thrust to idle. Idle thrust has indeed two capital positive influences: the combustor's temperature becomes lower than the melting point of volcanic ash/dust particles (no subsequent risk of deposition) and the air intake is reduced meaning that potentially fewer particles can be ingested by the engine.
- Immediately descend and make a 180-degree turn (evasive manoeuvre)
- If the aircraft needs to be levelled off, thrust adjustments should be minimised and performed through slow and smooth thrust lever movements, due to the reduced surge margins (cf. section 1.1 of the previous chapter).

- Switch turbine engine and wing anti-ice on, auxiliary power unit on, and all air conditioning packs on.
- For the pilots, put oxygen mask on at 100 per cent, if required.
- In case of engine flame-out, an engine 'restart' can be considered assuming that the aircraft has exited the contaminated area. Indeed, the vibrations induced by the latter process can help shatter the brittle glassy coatings off the turbine's nozzle guide vanes. A similar result could also be obtained by alternating between a positive and a negative load factor.

Parts / Occupants	Cause	Effect	Response
Turbine engines	fuel injection and combustor deposits of melted ash (glassy coatings)	surge, shut-down, difficult restart in flight	idle thrust, evasive manoeuvre
Turbine engines	clogging the turbine cooling vents	overheating	idle thrust, evasive manoeuvre
Pitot-static	clogging the sensors	unreliable air speed indications	attitude-based flying, indicated air speed deducted from ground speed and wind velocity
Turbine engines	abrasion with hard particles	wear of fan, compressor, turbine, transmission	idle thrust, evasive manoeuvre
Pneumatic controls	clogging the vents	failure	evasive manoeuvre
Windshield, body, wings, empennage	cracks, abrasion with hard particles	wear, opaqueness	evasive manoeuvre
Avionics, on-board instruments	clogging air-cooling vents, electrostatic discharges	overheating, malfunction	evasive manoeuvre
Human occupants	breathing contaminated air, eye cornea contact with ash/dust particles	respiratory problems, eye damage	nose breathing, replace contact lenses with eyeglasses
Turbine engines, body and instruments metallic parts	acidity, exposure to associated SO ₂ and sulphurous acid	corrosion (in time)	Maintenance check and replacement

Table 6 –
Adverse effects associated to VAC and VDC in decreasing order of severity and required responses


CONCENTRAZIONI MISURATE E PREVISTE

Diverse tecniche di misura sono state sviluppate recentemente allo scopo di misurare la concentrazione delle ceneri vulcaniche. In particolare le più utilizzate sono le seguenti:

- 1) <u>campionamenti in situ</u> la tecnica prevede di realizzare un campionamento di un volume di aria prelevata direttamente utilizzando un campionatore aviotrasportato.
- 2) <u>LIDAR</u> le misure possono essere condotte da terra (verso l'alto) o da un aereo (verso il basso). Il LIDAR è un sensore ottico che lavora con lo stesso principio del radar con la differenza che usa un fascio di luce pulsante al posto delle onde radio, capace di individuare particelle microscopiche come le ceneri.
- 3) <u>Fotometro solare</u> misura l'assorbimento che le ceneri determinano sulla luce solare. Basato a terra e puntato verso il sole, i fotometri misurano indirettamente la concentrazione valutando l'intensità della radiazione solare
- 4) <u>Immagini da satellite</u> le misure sono condotte dallo spazio per mezzo di satelliti. Le ceneri sono associate a colori caratteristici.Per ciascun pixel dell'immagine, l'intensità del colore è proporzionale alla concentrazione.
- 5) Modelli matematici prevedono la concentrazione

Airborne unit (classic in situ sampling)

Satellite imager

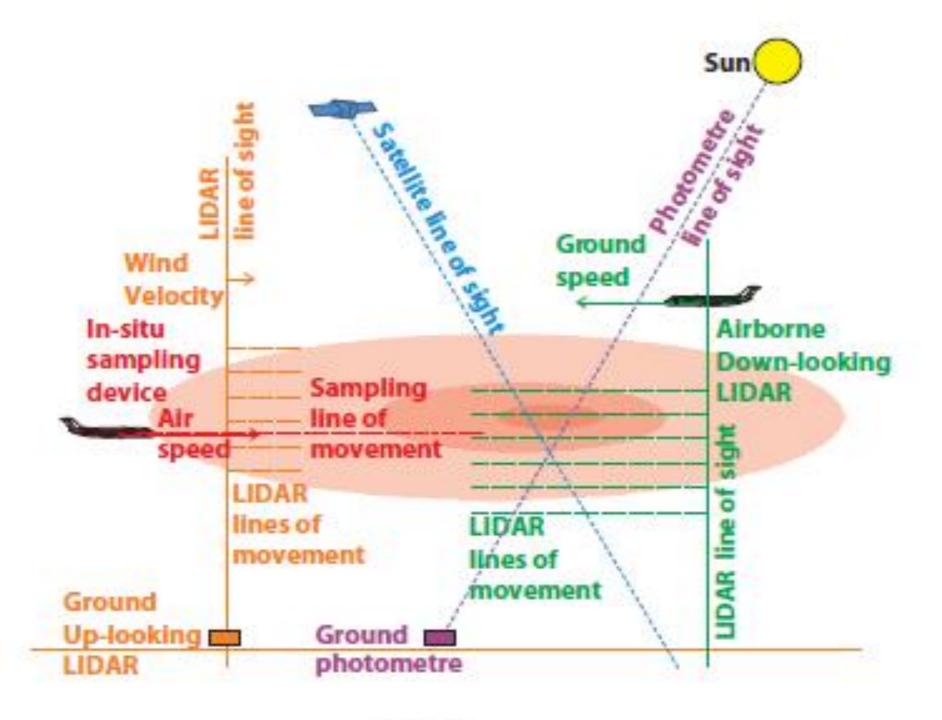


Figure 19 –
Current concentration measurement techniques

AREA DI IMMEDIATO PERICOLO

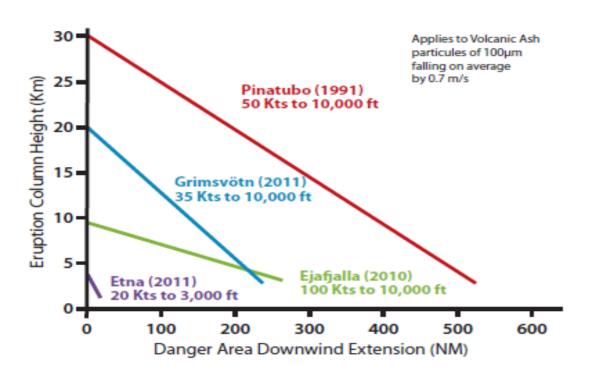


Figure 20 – Illustration of the concept of immediate danger area in few historical situations (Pinatubo, Eyjafjallajökull, Etna and Grímsvötn)

Volcano (eruption date)	Pinatubo (1991)	Grímsvötn (2011)	Eyjafjallajökull (2010)	Etna (2011)
Eruption column (km)	30	20	9	3.5
Flight Level (ft) Flight Level	10,000 100	10,000 100	10,000 100	3,000 30
Wind Velocity (kts)	50	35	100	20
Danger area (NM)	535	235	236	21

Cenere Vulcanica: nuovi sviluppi della modellistica

CONCLUSIONI

Bisognerebbe sempre distinguere tra "cenere vulcanica" e "polvere vulcanica". Il primo termine si riferisce alla nube scura ben definita, densa e chiaramente identificabile formata da cenere, polvere e fumi. La seconda definizione indica una diffusa concentrazione di polvere e fumi, sospesa nell'atmosfera in sottili strati. Mentre le nubi di cenere vulcanica sono localizzate nelle vicinanze del vulcano che le ha prodotte e generalmente durano non più di uno o due giorni, le contaminazioni di polvere vulcanica sono un fenomeno diffuso globalmente le cui tracce possono permanere per anni.

La pericolosità del fenomeno è funzione del livello di contaminazione e del tempo di esposizione. E' oramai universalmente riconosciuto che concentrazioni inferiori a 4 kg/hm3 non producono danni immediati per la sicurezza del volo.

	Volcanic Ash Cloud	Volcanic Dust Contamination	Sand Aerosol Contamination
Aviation Safety Risk	Serious incidents, no injury accidents	None on record	Very low (windshield cracks)
Impact on aviation	Local	Global due to misinterpretation	Maintenance issues

Bibliografia

ENAC APT-15 Operazioni volo su aeroporti in presenza di nube di cenere vulcanica (July 2003)

UGM-OPR-AVM-200: Manuale per l'assistenza meteorologica alle operazioni di volo in presenza di nube di cenere vulcanica" Ed. 2005

ICAO: Management of Flight Operations with known or forecast volcanic cloud contamination (Dec 2010)

ICAO EUR DOC 019: Vulcanic Ash Contingency Plan (Dec 2010)

EASA Safety Information Bulletin: Flight in Airspace with contamination of volcanic Ash (24 May 2011)

ENAC: Operations within areas of possible presence of volcanic ash (25 May 2011)

Eurocontrol e altri: Volcanic Ash Safety in Air Traffic Management (June 2011)

ENAC GEN-04

M.D-DAA: Operazioni in spazi aerei con contaminazione di ceneri vulcaniche